
Chapter 2

Error Detection and

Correction

2.1 Introduction

The following description from Economist, July 3rd, 2004, captures the essence
of error correction and detection, the subject matter of this chapter. “On July
1st [2004], a spacecraft called Cassini went into orbit around Saturn —the
first probe to visit the planet since 1981. While the rockets that got it there are
surely impressive, just as impressive, and much neglected, is the communications
technology that will allow it to transmit its pictures millions of kilometers back
to Earth with antennae that use little more power than a light-bulb.

To perform this transmission through the noisy vacuum of space, Cassini
employs what are known as error-correcting codes. These contain internal tricks
that allow the receiver to determine whether what has been received is accurate
and, ideally, to reconstruct the correct version if it is not.”

First, we study the logical operator exclusive-or, which plays a central role
in error detection and correction. The operator is written as ⊕ in these notes.
It is a binary operator, and its truth table is shown in Table 2.1. Encoding true
by 1 and false by 0, we get Table 2.2, which shows that the operator is addition
modulo 2, i.e., addition in which you discard the carry.

In all cases, we apply ⊕ to bit strings of equal lengths, which we call words.
The effect is to apply ⊕ to the corresponding bits independently. Thus,

F T
F F T
T T F

Table 2.1: Truth table of exclusive-or

25



26 CHAPTER 2. ERROR DETECTION AND CORRECTION

0 1
0 0 1
1 1 0

Table 2.2: Exclusive-or as addition modulo 2

0 1 1 0
⊕

1 0 1 1
=

1 1 0 1

2.1.1 Properties of Exclusive-Or

In the following expressions x, y and z are words of the same length, 0 is a word
of all zeros, and 1 is a word of all ones. x denotes the word obtained from x by
complementing each of its bits.

• ⊕ is commutative: x ⊕ y = y ⊕ x

• ⊕ is associative: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

• zero and complementation: x ⊕ 0 = x, x ⊕ 1 = x

• inverse: x ⊕ x = 0, x ⊕ x = 1

• distributivity over complementation: (x ⊕ y) = (x ⊕ y)

• Complementation: (x ⊕ y) = x ⊕ y

From the inverse property, we can regard ⊕ as subtraction modulo 2.
Exclusive-or of a set of 0s and 1s depends only on the number of 1s. The

result is 0 iff the number of 1s is even.

2.1.2 Dependent Set

A nonempty set of words, W , is dependent iff Ŵ = 0, where Ŵ is the exclusive-
or of all the words in W . Dependent sets are used in two applications later in
these notes, in Sections 2.5 and 2.7.3.

Observation W is dependent iff for every partition of W into subsets X and
Y , X̂ = Ŷ .
Proof: Let X and Y be any partition of W .

Ŵ = 0

≡ {X, Y is a partition of W ; so Ŵ = X̂ ⊕ Ŷ }



2.1. INTRODUCTION 27

X̂ ⊕ Ŷ = 0

≡ {add Ŷ to both sides of this equation}
X̂ ⊕ Ŷ ⊕ Ŷ = Ŷ

≡ {Ŷ ⊕ Ŷ = 0 and X̂ ⊕ 0 = X̂}
X̂ = Ŷ ✷

The proof of the following observation is similar to the one above and is
omitted.

Observation W is dependent iff there is a partition of W into subsets X and
Y , X̂ = Ŷ . ✷

Note: The two observations above say different things. The first one says
that if W is dependent then for all partitions into X and Y we have X̂ = Ŷ ,
and, conversely, if for all partitions into X and Y we have X̂ = Ŷ , then W
is dependent. The second observation implies a stronger result than the latter
part of the first observation: if there exists any (not all) partition into U and V
such that Û = V̂ , then W is dependent. ✷

Exercise 6

1. Show that (x ⊕ y = x ⊕ z) ≡ (y = z). As a corollary, prove that
(x ⊕ y = 0) ≡ (x = y).

2. What is the condition on x and u so that (x ⊕ u) < x, where x and u are
numbers written in binary?

3. Let W ′ be a set obtained from a dependent set W by either removing an
element or adding an element. Given W ′ determine W .

Solution to Part 2 of this Exercise Since (x ⊕ u) < x, there is a bit
position where x has a 1 and x⊕u has a 0, and all bits to the left of this bit are
identical in x and x⊕ u. So, x is of the form α1β and x⊕ u is of the form α0γ.
Then, taking their exclusive-or, see Table 2.3, we find that u has a string of
zeros followed by a single 1 and then another string (β ⊕ γ). Comparing x and
u in that table, x has a 1 in the position where the leading 1 bit of u appears.
This is the only relevant condition. It is not necessary that x be larger than u;
construct an example where x < u . ✷

x = α 1 β
x ⊕ u = α 0 γ

u = 0s 1 β ⊕ γ

Table 2.3: Computing x ⊕ (x ⊕ u)



28 CHAPTER 2. ERROR DETECTION AND CORRECTION

Exercise 7

Some number of couples attend a party at which a black or white hat is placed
on every one’s head. No one can see his/her own hat, but see all others. Every
one is asked to guess the color of his/her hat (say, by writing on a piece of
paper). The persons can not communicate in any manner after the hats are
placed on their heads. Devise protocols by which:

1. Either every one guesses correctly or every one guesses incorrectly.

2. Some one in each couple guesses correctly.

3. (Generalization of 2) Every male or every female guesses correctly.

Solution Let H be the exclusive-or of all hat colors, and h the color of hat of
a specific person and s the exclusive-or of all hat colors he/she can see. Clearly,
H = h ⊕ s, or h = H ⊕ s. Therefore, if a person knows the correct value of
H , then he/she can guess the hat color correctly by first computing s and then
H ⊕ s.

1. Every one guesses H to be 0. Then if H = 0, every one is correct and if
H = 1 every one is wrong.

2. Each couple need only look at each other, and not all others, to solve
this. A couple forms a group of two. One of them guesses the exclusive-
or of their two hats to be 0 and the other 1; so one of them is correct.
Effectively, for two people A and B, A guesses the hat color to be same as
B’s and B guesses it to be opposite of A’s.

3. The females take H to be 0 and the males take it to be 1.

A more general problem Let there be N persons and let the number of
hat colors be t, 1 ≤ t ≤ N (previously, t = 2). Not every color may appear
on someone’s head. The value of t is told to the group beforehand. Devise a
protocol such that ⌊N/t⌋ persons guess their hat colors correctly.

For a solution see,
http://www.cs.utexas.edu/users/misra/Notes.dir/N-colorHats.pdf

Exercise 8

There are 100 men standing in a line, each with a hat on his head. Each hat is
either black or white. A man can see the hats of all those in front of him, but
not his own hat nor of those behind him. Each man is asked to guess the color
of his hat, in turn from the back of the line to the front. He shouts his guess
which every one can hear. Devise a strategy to maximize the number of correct
guesses.

A possible strategy is as follows. Number the men starting at 0 from the
back to the front. Let the guess of 2i be the color of (2i+1)’s hat, and (2i+1)’s
guess is what he heard from 2i. So, (2i + 1)’s guess is always correct; thus, half
the guesses are correct. We do considerably better in the solution, below.



2.1. INTRODUCTION 29

Solution Assume every person is a man (for grammatical succinctness). Every
one computes exclusive-or of all the guesses he has heard (G) and all the hats
he can see (S), and guesses G ⊕ S. For the man at the back of the line G = 0,
and for the front person S = 0. We claim that the guesses are correct for every
one, except possibly, the man at the back of the line.

Consider the diagram in Figure 2.1 that shows two men a and a′ in the line,
where a is just ahead of a′. Person a hears G and sees S; person a′ hears G′

and sees S′. Let the hat color of a be h. We show that the guess of a, G ⊕ S,
is h. Therefore, every one guesses correctly who has someone behind him.

GS

S’ G’
Front Back

a’

a

Figure 2.1: What a and a′ see and hear

G ⊕ S
= {G = G′⊕ guess of a′. And, guess of a′ = G′ ⊕ S′}

G′ ⊕ G′ ⊕ S′ ⊕ S
= {G′ ⊕ G′ = 0. And, S′ = S ⊕ h}

S ⊕ h ⊕ S
= {simplifying}

h

Exercise 9

(A Mathematical Curiosity) Let S be a finite set such that if x and y are in S,
so is x⊕ y. First, show that the size of S is a power of 2. Next, show that if the
size of S exceeds 2 then S is dependent.

Solution See
http://www.cs.utexas.edu/users/misra/Notes.dir/NoteEWD967.pdf

Exercise 10

Let w1, w2, . . . , wN be a set of unknown words. Let Wi be the exclusive-or of
all the words except wi, 1 ≤ i ≤ N . Given W1, W2, . . . , WN , can you determine
the values of w1, w2, . . . , wN? You can only apply ⊕ on the words. You may
prefer to attack the problem without reading the following hint.

Hint:
1. Show that the problem can be solved when N is even.
2. Show that the problem cannot be solved when N is odd.

A more general problem:
Investigate how to solve a general system of equations that use ⊕ as the only
operator. For example, the equations may be:



30 CHAPTER 2. ERROR DETECTION AND CORRECTION

w1 ⊕ w2 ⊕ w4 = 1 0 0 1 1
w1 ⊕ w3 = 1 0 1 1 0
w2 ⊕ w3 = 0 0 0 0 1
w3 ⊕ w4 = 1 1 0 1 1

Solution Let S denote the exclusive-or of all the unknowns, i.e., S = w1 ⊕
w2 ⊕ . . . ⊕ wN . Then Wi = S ⊕ wi.

1. For even N :

W1 ⊕ W2 ⊕ . . . ⊕ WN

= {Wi = S ⊕ wi}
(S ⊕ w1) ⊕ (S ⊕ w2) ⊕ . . . ⊕ (S ⊕ wN )

= {Regrouping terms}
(S ⊕ S ⊕ . . . ⊕ S) ⊕ (w1 ⊕ w2 ⊕ . . . ⊕ wN )

= {the first operand has an even number of S}
0 ⊕ (w1 ⊕ w2 ⊕ . . . ⊕ wN )

= {the last operand is S}
S

Once S is determined, we can compute each wi because

S ⊕ Wi

= {Wi = S ⊕ wi}
S ⊕ S ⊕ wi

= {S ⊕ S = 0}
wi

2. For odd N : We show that any term that we compute is exclusive-or of
some subset of w1, w2, . . . , wN , and the subset size is even. Therefore, we
will never compute a term that represents, say, w1 because then the subset
size is odd.

To motivate the proof, suppose we have N = 5, so W1 = w2⊕w3⊕w4⊕w5,
W2 = w1⊕w3⊕w4⊕w5, W3 = w1⊕w2⊕w4⊕w5, W4 = w1⊕w2⊕w3⊕w5,
W5 = w1 ⊕ w2 ⊕ w3 ⊕ w4. Initially, each of the terms, W1, W2 etc., is
represented by a subset of unknowns of size 4. Now, suppose we compute
a new term, W1⊕W4; this represents w2⊕w3⊕w4⊕w5⊕w1⊕w2⊕w3⊕w5,
which is same as w1 ⊕ w4, again a subset of even number of terms.

The proof is as follows. Initially the proposition holds because each Wi

is the exclusive-or of all but one of the unknowns, namely wi; so the
corresponding subset size is N − 1, which is even since N is odd.

Whenever we apply ⊕ to any two terms: (1) either their subsets have
no common unknowns, so the resulting subset contains all the unknowns
from both subsets, and its size is the sum of both subset sizes, which is
even, or (2) the subsets have some number of common unknowns, which
get cancelled out from both subsets, again yielding an even number of
unknowns for the resulting subset. ✷



2.2. SMALL APPLICATIONS 31

2.2 Small Applications

2.2.1 Complementation

To complement some bit of a word is to flip it, from 1 to 0 or 0 to 1. To
selectively complement the bits of x where y has a 1, simply do

x := x ⊕ y

From symmetry of the right side, the resulting value of x is also a complemen-
tation of y by x. If y is a word of all 1s, then x ⊕ y is the complement of (all
bits of) x; this is just an application of the law: x ⊕ 1 = x.

Suppose we want to construct a word w from x, y and u as follows. Wherever
u has a 0 bit choose the corresponding bit of x, and wherever it has 1 choose
from y, see the example below.

u = 0 1 0 1
x = 1 1 0 0
y = 0 0 1 1
w = 1 0 0 1

Then w is, simply, ((x ⊕ y) ∧ u) ⊕ x, where ∧ is applied bit-wise.

Exercise 11

Prove this result. ✷

2.2.2 Toggling

Consider a variable x that takes two possible values, m and n. We would like to
toggle its value from time to time: if it is m , it becomes n and vice versa. There
is a neat way to do it using exclusive-or. Define a variable t that is initially set
to m ⊕ n and never changes.

toggle:: x := x ⊕ t

To see why this works, check out the two cases: before the assignment, let
the value of x be m in one case and n in the other. For x = m, the toggle sets
x to m ⊕ t, i.e., m ⊕ m ⊕ n, which is n. The other case is symmetric.

Exercise 12

Variable x assumes the values of p, q and r in cyclic order, starting with p.
Write a code fragment to assign the next value to x, using ⊕ as the primary
operator in your code. You will have to define additional variables and assign
them values along with the assignment to x.



32 CHAPTER 2. ERROR DETECTION AND CORRECTION

Solution Define two other variables y and z whose values are related to x’s
by the following invariant:

x, y, z = t, t ⊕ t′, t ⊕ t′′

where t′ is the next value in cyclic order after t (so, p′ = q, q′ = r and r′ = p),
and t′′ is the value following t′. The invariant is established initially by letting

x, y, z = p, p ⊕ q, p ⊕ r

The cyclic assignment is implemented by

x := x ⊕ y;
y := y ⊕ z;
z := y ⊕ z

Show that if x, y, z = t, t ⊕ t′, t ⊕ t′′ before these assignments, then x, y, z =
t′, t′ ⊕ t′′, t′ ⊕ t after the assignments (note: t′′′ = t). ✷

2.2.3 Exchange

Here is a truly surprising application of ⊕. If you wish to exchange the val-
ues of two variables you usually need a temporary variable to hold one of the
values. You can exchange without using a temporary variable. The following
assignments exchange the values of x and y.

x := x ⊕ y;
y := x ⊕ y;
x := x ⊕ y

To see that this program actually exchanges the values, suppose the values
of x and y are X and Y before the exchange. The following annotated program
shows the values they have at each stage of the computation; I have used back-
ward substitution to construct this annotation. The code is to the left and the
annotation to the right in a line.

y = Y, (x ⊕ y) ⊕ y = X , i.e., x = X, y = Y
x := x ⊕ y;

x ⊕ (x ⊕ y) = Y, (x ⊕ y) = X , i.e., y = Y, (x ⊕ y) = X
y := x ⊕ y;

x ⊕ y = Y, y = X
x := x ⊕ y

x = Y, y = X

2.2.4 Storage for Doubly-Linked Lists

Each node x in a doubly-linked list stores a data value, a left pointer, x .left , to
a node and a right pointer, x .right , to a node. One or both pointers may be
nil, a special value. A property of the doubly-linked list is that for any node x



2.2. SMALL APPLICATIONS 33

x .left 6= nil ⇒ x .left .right = x
x .right 6= nil ⇒ x .right .left = x

Typically, each node needs storage for the data value and for two pointers.
The storage for two pointers can be reduced to the storage needed for just one
pointer; store x .left ⊕ x .right at x. How do we retrieve the two pointer values
from this one value? During a computation, node x is reached from either the
left or the right side; therefore, either x .left or x .right is known. Applying ⊕ to
the known pointer value and x .left ⊕ x .right yields the other pointer value; see
the treatment of toggling in Section 2.2.2. Here, nil should be treated as 0.

We could have stored x .left + x .right and subtracted the known value from
this sum; exclusive-or is faster to apply and it avoids overflow problems.

Sometimes, nodes in a doubly-linked list are reached from some node outside
the list; imagine an array each of whose entries points to a node in a doubly-
linked list. The proposed pointer compression scheme is not useful then because
you can reach a node without knowing the value of any of its pointers.

Note: These kinds of pointer manipulations are often prevented by the
compiler of a high-level language through type checks. I don’t advocate such
manipulations except when you are programming in an assembly language, and
you need to squeeze out the last drop of performance. Even then see if there
are better alternatives; often a superior data structure or algorithm gives you
far better performance than clever tricks!1 ✷

2.2.5 The Game of Nim

The game of Nim is a beautiful illustration of the power of the exclusive-or
operator.

The game is played by two players who take turns in making moves. Initially,
there are several piles of chips and in a move a player may remove any positive
number of chips from a single pile. A player loses when he can’t make a move,
i.e., all piles are empty. We develop the conditions for a specific player to win.

Suppose there is a single pile. The first player wins by removing all chips
from that pile. Now suppose there are two piles, each with one chip, call this
initial state (1,1). The first player is forced to empty out one pile, and the
second player then removes the chip from the other pile, thus winning the game.
Finally, consider two piles, one with one chip and the other with two chips. If
the first player removes all chips from either pile, he loses. But if he removes
one chip from the bigger pile, he creates the state (1,1) which leads to a defeat
for the second player, from the previous argument.

The Underlying Mathematics Consider the number of chips in a pile as
a word (a bit string) and take the exclusive-or of all the words. Call the state

1“The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility, and among other things he
avoids clever tricks like the plague”. From “The Humble Programmer” by Edsger W. Dijkstra,
1972 Turing Award lecture [15].



34 CHAPTER 2. ERROR DETECTION AND CORRECTION

losing if the result is 0, winning otherwise. Thus, the state (1,1) results in 0, a
losing state, whereas (1,2) gives 0 1 ⊕ 1 0 = 1 1, which is a winning state. The
final state, where all piles are empty, is a losing state. The mnemonics, losing
and winning, signify the position of a player: a player who has to make a move
in a winning state has a winning strategy, i.e., if he makes the right moves he
wins no matter what his opponent does; a player in a losing state will definitely
lose provided his opponent makes the right moves. So, one of the players has a
winning strategy based on the initial state. Of course, either player is allowed
to play stupidly and squander a winning position.

The proof of this result is based on the following state diagram. We show
that any possible move in a losing state can only lead to a winning state, thus
a player who has to move in this state cannot do anything but hope that his
opponent makes a mistake! A player in a winning state has at least one move to
transform the state to losing; of course, he can make a wrong move and remain
in the winning state, thus handing his opponent the mistake he was hoping for.
Next, we prove the claims made in this diagram.

all moves

there is a move

winninglosing

Figure 2.2: State transitions in the game of Nim

A move reduces a pile of p chips to q chips, 0 ≤ q < p. Let the exclusive-or
of the remaining piles be s. Before the move, exclusive-or of all piles was s⊕ p.
After the move it is s ⊕ q. First, we show that in a losing state, i.e., s ⊕ p = 0,
all possible moves establish a winning state, i.e., s ⊕ q 6= 0.

s ⊕ q
= {p ⊕ p = 0}

s ⊕ q ⊕ p ⊕ p
= {s ⊕ p = 0}

p ⊕ q
6= {p 6= q}

0

Now, we show that there is a move in the winning state to take it to losing
state. Let the exclusive-or of all piles be u, u 6= 0. Let x be any pile that has a
1 in the same position as the leading 1 bit of u (show that x exists). So,

u = 0′s 1 γ
x = α 1 β

The winning move is to replace x by x ⊕ u. We show that (1) x ⊕ u < x,
and (2) the exclusive-or of the resulting set of piles is 0, i.e., the state after the
move is a losing state.



2.3. SECURE COMMUNICATION 35

Proof of (1): x⊕u = α 0(β⊕γ). Comparing x and x⊕u, we have x⊕u < x.
Proof of (2): The exclusive-or of the piles before the move is u; so, the

exclusive-or of the piles except x is x ⊕ u. Hence, the exclusive-or of the piles
after the move is (x ⊕ u) ⊕ (x ⊕ u), which is 0.

Exercise 13

In a winning state let y be a pile that has a 0 in the same position as the leading
bit of u. Show that removing any number of chips from y leaves a winning state.

Solution The forms of u and y are as follows.

u = 0s 1 γ
y = α 0 β

Suppose y is reduced to y′ and the exclusive-or of the resulting set is 0. Then
u⊕ y ⊕ y′ = 0, or y′ = u⊕ y. Hence, y′ = α 1 (β ⊕ γ). So, y′ > y; that is , such
a move is impossible. ✷

2.3 Secure Communication

The problem in secure communication is for a sender to send a message to a
receiver so that no eavesdropper can read the message during transmission. It
is impossible to ensure that no one else can see the transmission; therefore,
the transmitted message is usually encrypted so that the eavesdropper cannot
decipher the real message. In most cases, the sender and the receiver agree on
a transmission protocol; the sender encrypts the message in such a fashion that
only the receiver can decrypt it.

In this section, I describe a very simple encryption (and decryption) scheme
whose only virtue is simplicity. Usually, this form of transmission can be bro-
ken by a determined adversary. There are now very good methods for secure
transmission, see Rivest, Shamir and Adelman [44].

The sender first converts the message to be sent to a bit string, by replacing
each symbol of the alphabet by its ascii representation, for instance. This string
is usually called the plaintext. Next, the plaintext is broken up into fixed size
blocks, typically around 64 bits in length, which are then encrypted and sent.
For encryption, the sender and the receiver agree on a key k, which is a bit
string of the same length as the block. To send a string x, the sender transmits
y, where y = x ⊕ k. The receiver, on receiving y, computes y ⊕ k which is
(x⊕ k)⊕ k, i.e., x, the original message. An eavesdropper can only see y which
appears as pure gibberish. The transmission can only be decrypted by some
one in possession of key k.

There are many variations on this simple scheme. It is better to have a
long key, much longer than the block length, so that successive blocks are en-
crypted using different strings. When the bits from k run out, wrap around and
start reusing the bits of k from the beginning. Using a longer key reduces the
possibility of the code being broken.



36 CHAPTER 2. ERROR DETECTION AND CORRECTION

This communication scheme is simple to program; in fact, encryption and
decryption have the same program. Each operation is fast, requiring time pro-
portional to a block length for encryption (and decryption). Yet, the scheme
has significant drawbacks. Any party who has the key can decode the message.
More important, any one who can decode a single block can decode all blocks
(assuming that the key length is same as the block length), because given x and
y where y = x ⊕ k, k is simply x ⊕ y. Also, the sender and the receiver will
have to agree on a key before the transmission takes place, so the keys have to
be transmitted first in a secure manner, a problem known as key exchange. For
these reasons, this scheme is not used in high security applications.

Exercise 14

The following technique has been suggested for improving the security of trans-
mission. The sender encrypts the first block using the key k. He encrypts
subsequent blocks by using the previous encrypted block as the key. Is this
secure? How about using the plaintext of the previous block as the key? Sup-
pose a single block is deciphered by the eavesdropper; can he then decipher all
blocks, or all subsequent blocks? ✷

2.4 Oblivious Transfer

This is an interesting variation of the secure communication problem. Alice has
two pieces of data m0 and m1. Bob requests one of these data from Alice. The
restriction is that Alice should not know which data has been requested (so,
she has to send both data in some encoded form) and Bob should be able to
extract the data he has requested, but know nothing about the data he has not
requested.

We solve the problem using a trusted third party, Charles, who merely sup-
plies additional data to both Alice and Bob. Charles creates two pieces of data,
r0 and r1, and sends both to Alice; she will use these data as masks for m0 and
m1. Also, Charles creates a single bit d, and sends d and rd to Bob.

Now, suppose Bob needs mc, c ∈ {0, 1}. Then he sends e, where e = c ⊕ d.
Alice responds by sending a pair (f0, f1), where fi = mi ⊕ re⊕i. That is,
f0 = m0 ⊕ re and f1 = m1 ⊕ re. Bob computes fc ⊕ rd; we show that this is mc.

fc ⊕ rd

= mc ⊕ re⊕c ⊕ rd

= mc ⊕ rc⊕d⊕c ⊕ rd

= mc ⊕ rd ⊕ rd

= mc

We claim that Alice does not know c, because she receives e which tells her
nothing about c. And, Bob does not know mc from the data he receives from
Alice. All he can do is apply exclusive-or with rd. If Bob computes fc ⊕ rd he
gets



2.5. RAID ARCHITECTURE 37

fc ⊕ rd

= mc ⊕ re⊕c ⊕ rd

= mc ⊕ rc⊕d⊕c ⊕ rd

= mc ⊕ r1⊕d ⊕ rd

= mc ⊕ r
d
⊕ rd

= mc ⊕ r0 ⊕ r1

Since r0 and r1 are arbitrary data, this has no further simplification.

In Section 3.4, Page 67, there is a solution to this problem avoiding the
trusted third party, using message encryption.

2.5 RAID Architecture

The following scenario is common in corporate data centers. A large database,
consisting of millions of records, is stored on a number of disks. Since disks may
fail, data is stored on backup disks also. One common strategy is to partition
the records of the database and store each partition on a disk, and also on a
backup disk. Then, failure of one disk causes no difficulty. Even when multiple
disks fail, the data can be recovered provided both disks for a partition do not
fail.

There is a different strategy, known as RAID, that has gained popularity
because it needs only one additional disk beyond the primary data disks, and
it can tolerate failure of any one disk.

Imagine that the database is a matrix of bits, where each row represents a
record, and each column a specific bit in all records. Store each column on a
separate disk and store the exclusive-or of all columns on a backup disk. Let ci

denote the ith column, 1 ≤ i ≤ N , in the database. Then the backup column,
c0 is given by c0 = c1 ⊕ . . . ⊕ cN . Therefore, the set of columns, c0 . . . cN , is
a dependent set, see Section 2.1.2. Then, any column ci, 0 ≤ i ≤ N , is the
exclusive-or of the remaining columns. Therefore, the contents of any failed
disk can be reconstructed from the remaining disks.

2.6 Error Detection

Message transmission is vulnerable to noise, which may cause portions of a
message to be altered. For example, message 1 1 0 0 1 may become 1 0 1 0 1.
In this section, we study methods by which a receiver can determine that the
message has been altered, and thus request retransmission. In the next section,
we discuss methods by which a receiver can correct (some of) the errors, thus
avoiding retransmission.

A long message is typically broken up into fixed size blocks. If the message
can not be broken up exactly, say a 460 bit message being put into 64 bit
blocks, extra bits, which can be distinguished from the real ones, are added at
the end of the message so that the string fits exactly into some number of blocks.



38 CHAPTER 2. ERROR DETECTION AND CORRECTION

Henceforth, each block is transmitted independently, and we concentrate on the
transmission of a single block.

2.6.1 Parity Check Code

Consider the following input string where spaces separate the blocks.

011 100 010 111

The sender appends a bit at the end of each block so that each 4-bit block
has an even number of 1s. This additional bit is called a parity bit, and each
block is said to have even parity. After addition of parity bits, the input string
shown above becomes,

0110 1001 0101 1111

This string is transmitted. Suppose two bits are flipped during transmission,
as shown below; the flipped bits are underlined.

0110 1000 0101 0111

Note that the flipped bit could be a parity bit or one of the original ones.
Now each erroneous block has odd parity, and the receiver can identify all such
blocks. It then asks for retransmissions of those blocks.

If two bits (or any even number) of a block get flipped, the receiver cannot
detect the error. This is a serious problem, so simple parity check is rarely
used. In practice, the blocks are much longer (than 3, shown here) and many
additional bits are used for error detection.

Is parity coding any good? How much is the error probability reduced if
you add a single parity bit? First, we compute the probability of having one
or more error in a b bit block, and then compute the probability of missing
errors even after adding a single parity bit. The analysis here uses elementary
probability theory.

Let p be the probability of error in the transmission of a single bit2. The
probability of correct transmission of a single bit is q, where q = 1 − p. The
probability of correct transmission of a b bit block is qb. Therefore, without
parity bits the probability that there is an undetected error in the block is
1 − qb. For p = 10−4 and b = 12, this probability is around 1.2 × 10−3.

With the addition of a parity bit, we have to send b+1 bits. The probability
of n errors in a block of b + 1 bits is

(
b + 1

n

)
pn × q(b+1−n)

2I am assuming that all errors are independent, a thoroughly false assumption when burst
errors can arise.



2.6. ERROR DETECTION 39

1 0 1 1 1
0 1 1 1 1
1 1 1 0 1
0 0 1 1 0
0 0 0 1 1

Table 2.4: Adding parity bits to rows and columns

This can be understood as follows. First,

(
b + 1

n

)
is the number of different

ways of choosing n bits out of b+1 bits (this is a binomial coefficient), pn is the
probability of all these bits becoming erroneous, and q(b+1−n) is the probability
of the remaining bits being error-free.

We can not detect any even number of errors with a single parity bit. So,
the probability of undetected error is the sum of this term over all even values
of n, 0 < n ≤ b + 1. We can simplify calculations by noting that q is typically

very small; so we may ignore all except the first term, i.e., take

(
b + 1

2

)
pn ×

q(b+1−2) as the probability of undetected error. Setting b, p, q = 12, 10−4, 1 −
10−4, this probability is around 7.8× 10−7, several orders of magnitude smaller
than 1.2 × 10−3.

2.6.2 Horizontal and Vertical Parity Check

A simple generalization of the simple parity check scheme is described next.
We regard the data as a matrix of bits, not just a linear string. For instance,
we may break up a 16 bit block into 4 subblocks, each of length 4. We regard
each subblock as the row of a matrix, so, column i is the sequence of ith bits
from each subblock. Then we add parity bits to each row and column, and a
single bit for the entire matrix. In Table 2.4, 4 subblocks of length 4 each are
transformed into 5 subblocks of length 5 each.

We can now detect odd number of errors in rows or columns . If two adjacent
bits in a row get altered, the row parity remains the same but the column parities
for the affected columns are altered.

The most common use of this scheme is in transmitting a sequence of ascii
characters. Each character is a 8-bit string, which we regard as a row. And 8
characters make up a block.

Exercise 15

Show an error pattern in Table 2.4 that will not be detected by this method. ✷

Exercise 16

Develop a RAID architecture based on two-dimensional parity bits. ✷



40 CHAPTER 2. ERROR DETECTION AND CORRECTION

2.7 Error Correction

In many practical situations, retransmission is expensive or impossible. For
example, when the sender is a spacecraft from a distant planet, the time of
transmission can be measured in days; so, retransmission adds significant delay,
and the spacecraft will have to store a huge amount of data awaiting any re-
transmission request. Even more impractical is to request retransmission of the
music on a CD whose artist is dead.

2.7.1 Hamming Distance

The Hamming distance —henceforth, simply called distance— between two
words is the number of positions where they differ. Thus the distance between
1 0 0 1 and 1 1 0 0 is 2. This is the number of 1s in 1 0 0 1 ⊕ 1 1 0 0, which is
0 1 0 1.

Distance is a measure of how similar two words are; smaller the distance
greater the similarity. Observe the following properties of distance. Below, x, y
and z are words and d(x, y) is the distance between x and y.

• (d(x, y) = 0) ≡ (x = y)

• d(x, y) ≥ 0

• d(x, y) = d(y, x)

• (Triangle Inequality) d(x, y) + d(y, z) ≥ d(x, z)

The first two properties are easy to see, by inspection. For the last property,
observe that it is sufficient to prove this result when x, y and z are single bits,
because the distance between bit strings are computed bit by bit. We can prove
d(x, y) + d(y, z) ≥ d(x, z) as follows3.

d(x, y) + d(y, z)
= {x, y and z are single bits. So, d(x, y) = x ⊕ y}

(x ⊕ y) + (y ⊕ z)
≥ {For bits a and b, a + b ≥ a ⊕ b. Let a = x ⊕ y and b = y ⊕ z}

(x ⊕ y) ⊕ (y ⊕ z)
= {simplify}

x ⊕ y ⊕ y ⊕ z
= {simplify}

x ⊕ z
= {x and z are single bits. So, d(x, z) = x ⊕ z}

d(x, z)

Hamming distance is essential to the study of error detection (Section 2.6)
and error correction (Section 2.7).

3This proof is due to Srinivas Nedunari, who was auditing this class during Spring 2008.



2.7. ERROR CORRECTION 41

Original With Parity Additional Bits
00 000 00000
01 011 01101
10 101 10110
11 110 11011

Table 2.5: Coding for error correction; parity bits are in bold

Exercise 17

Let x and y be non-negative integers, count(x) the number of 1s in the binary
representation of x, and even(x) is true iff x is even. We say that x has even
parity if count(x) is even, otherwise it has odd parity. Show that two words
of identical parity (both even or both odd) have even distance, and words of
different parity have odd distance.

Solution In the following proof we start with a property of count.

count(x) + count(y) has the same parity (even or odd) as count(x ⊕ y)
⇒ {writing even(n) to denote that number n is even}

even(count(x) + count(y)) ≡ even(count(x ⊕ y))
≡ {for any two integers p and q, even(p + q) = (even(p) ≡ even(q));

let p be count(x) and q be count(y)}
(even(count(x)) ≡ even(count(y))) ≡ even(count(x ⊕ y))

≡ {count(x ⊕ y) = d(x, y)}
(even(count(x)) ≡ even(count(y))) ≡ even(d(x, y))

The term even(count(x)) stands for “x has even parity”. Therefore, the first
term in the last line of the above proof, (even(count(x)) ≡ even(count(y))),
denotes that x and y have identical parity. Hence, the conclusion in the above
proof says that the distance between x and y is even iff x and y have identical
parity. ✷

2.7.2 A Naive Error-Correcting Code

When retransmission is not feasible, the sender encodes the messages in such a
way that the receiver can detect and correct some of the errors. As an example,
suppose that the sender plans to send a 2-bit message. Adding a parity bit
increases the block length to 3. Repeating the original 2-bit message after that
gives a 5-bit block, as shown in Table 2.5.

Each of the possible blocks —in this case, 5-bit blocks— is called a codeword.
Codewords are the only possible messages (blocks) that will be sent. So, if the
sender plans to send 11, he will send 11011. In the example of Table 2.5, there
are only four 5-bit codewords, instead of 32 possible ones. This means that it
will take longer to transmit a message, because many redundant bits will be
transmitted. The redundancy allows us to detect and correct errors.



42 CHAPTER 2. ERROR DETECTION AND CORRECTION

Codeword Received Word Hamming Distance
00000 11010 3
01101 11010 4
10110 11010 2
11011 11010 1

Table 2.6: Computing Hamming distance to codewords

Codeword Received Word Hamming Distance
00000 10010 2
01101 10010 5
10110 10010 1
11011 10010 2

Table 2.7: Hamming distance when there are two errors

For the given example, we can detect two errors and correct one error in
transmission. Suppose 11011 is changed to 11010. The receiver observes that
this is not a codeword, so he has detected an error. He corrects the error
by looking for the nearest codeword, the one that has the smallest Hamming
distance from the received word. The computation is shown in Table 2.6. As
shown there, the receiver concludes that the original transmission is 11011.

Now suppose two bits of the original transmission are altered, so that 11011
is changed to 10010. The computation is shown in Table 2.7. The receiver will
detect that there is an error, but based on distances, he will assume that 10110
was sent. We can show that this particular encoding can correct one error only.
The number of errors that can be detected/corrected depends on the Hamming
distance among the codewords, as given by the following theorem.

Theorem 1 Let h be the Hamming distance between the nearest two code-
words. It is possible to detect any number of errors less than h and correct any
number of errors less than h/2.

Proof: The statement of the theorem is as follows. Suppose codeword x is
transmitted and string y received.

1. if d(x, y) < h: the receiver can detect if errors have been introduced during
transmission.

2. if d(x, y) < h/2: the receiver can correct the errors, if any. It picks the
closest codeword to y, and that is x.

Proof of (1): The distance between any two distinct codewords is at least
h. The distance between x and y is less than h. So, either x = y or y is
not a codeword. Therefore, the receiver can detect errors as follows: if y is



2.7. ERROR CORRECTION 43

Block length h = 3 h = 5 h = 7
5 4 2 -
7 16 2 2
10 72-79 12 2
16 2560-3276 256-340 36-37

Table 2.8: Number of codewords for given block lengths and h

a codeword, there is no error in transmission, and if y is not a codeword, the
transmission is erroneous.

Proof of (2): We show that the closest codeword to y is x, i.e., for any other
codeword z, d(x, y) < d(y, z). We are given

d(x, y) < h/2
⇒ {arithmetic}

2 × d(x, y) < h
⇒ {x and z are codewords; so, h ≤ d(x, z)}

2 × d(x, y) < d(x, z)
⇒ {triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)}

2 × d(x, y) < d(x, y) + d(y, z)
⇒ {arithmetic}

d(x, y) < d(y, z)

Exercise 18

Compute the nearest distance among the codewords in Table 2.5. ✷

It is clear from Theorem 1 that we should choose codewords to maximize h.
But with a fixed block length, the number of codewords decreases drastically
with increasing h. Table 2.8 shows the number of codewords for certain values
of the block length and h. For example, if the block length is 7 and we insist
that the distance between codewords be at least 3, i.e., h = 3, then we can find
16 codewords satisfying this property. So, we can encode 4 bit messages in 7
bit codewords maintaining a distance of 3, which would allow us to detect 2
errors and correct 1 error. An entry like 72-79 (for block length 10 and h = 3)
denotes that the exact value is not known, but it lies within the given interval.
Note that the decrease along a row, as we increase the minimum distance while
keeping the block length same, is quite dramatic.

Exercise 19

Prove that the parity check code of Section 2.6.1 can be used to detect at most
one error, but cannot be used to correct any error. ✷

2.7.3 Hamming Code

The coding scheme described in this section was developed by Hamming, a
pioneer in Coding theory who introduced the notion of Hamming distance. It



44 CHAPTER 2. ERROR DETECTION AND CORRECTION

0 0 1 1 1 1 0 1 0 1 1 0 1
d d d d d c d d d c d c c
13 12 11 10 9 8 7 6 5 4 3 2 1

* * * * * * * *

Table 2.9: Hamming code transmission

requires only logarithmic number of extra bits, called check bits, and it corrects
at most one error in a transmission. The novel idea is to transmit in the check
bits the positions where the data bits are 1. Since it is impractical to actually
transmit all the positions, we will instead transmit an encoding of them, using
exclusive-or. Also, since the check bits can be corrupted as easily as the data
bits, we treat check bits and data bits symmetrically; so, we also send the
positions where the check bits are 1s. More precisely, we regard each position
number in the transmitted string as a word, and encode the check bits in such
a way that the following rule is obeyed:

• HC Rule: the set of position numbers where the data bits and check
bits are 1 form a dependent set, i.e., the exclusive-or of these positions,
regarded as words, is 0 (see Section 2.1.2).

Let us look at an example where the HC rule has been applied.

Example Suppose we wish to send a message of 9 bits. We add 4 check bits
and transmit a 13-bit string, as shown in Table 2.9. The data bits are labeled
d and the check bits c. The positions where 1s appear are labeled by *. They
form a dependent set; check that

1 0 1 1 (=11)
⊕

1 0 1 0 (=10)
⊕

1 0 0 1 (=9)
⊕

1 0 0 0 (=8)
⊕

0 1 1 0 (=6)
⊕

0 1 0 0 (=4)
⊕

0 0 1 1 (=3)
⊕

0 0 0 1 (=1)
= 0 0 0 0 ✷



2.7. ERROR CORRECTION 45

The question for the sender is where to store the check bits (we have stored
them in positions 8, 4, 2 and 1 in the example above) and how to assign values
to them so that the set of positions is dependent. The question for the receiver
is how to decode the received string and correct a possible error.

Receiver Let P be the set of positions where the transmitted string has 1s
and P ′ where the received string has 1s. From the assumption that there is at
most one error, we have either P = P ′, P ′ = P ∪ {t}, or P = P ′ ∪ {t}, for some
position t; the latter two cases arise when the bit at position t is flipped from 0
to 1, and 1 to 0, respectively. From rule HC, P̂ = 0, where P̂ is the exclusive-or
of the words in P .

The receiver computes P̂ ′. If P = P ′, he gets P̂ ′ = P̂ = 0. If P ′ = P ∪ {t},
he gets P̂ ′ = P̂ ⊕ {t} = 0 ⊕ {t} = t. If P = P ′ ∪ {t}, he gets P̂ = P̂ ′ ⊕ {t}, or
P̂ ′ = P̂ ⊕ {t} = 0 ⊕ {t} = t. Thus, in both cases where the bit at t has been
flipped, P̂ ′ = t. If t 6= 0, the receiver can distinguish error-free transmission
from erroneous transmission and correct the error in the latter case.

Sender We have seen from the previous paragraph that there should not be
a position numbered 0, because then error-free transmission cannot be distin-
guished from one where the bit at position 0 has been flipped. Therefore, the
positions in the transmitted string are numbered starting at 1. Each position is
an n-bit word. And, we will employ n check bits.

Check bits are put at every position that is a power of 2 and the remaining
bits are data bits. In the example given earlier, check bits are put at positions
1, 2, 4 and 8, and the remaining nine bits are data bits. So the position of
any check bit as a word has a single 1 in it. Further, no two check bit position
numbers have 1s in the same place.

Let C be the set of positions where the check bits are 1s and D the positions
where the data bits are 1s. We know D, but we don’t know C yet, because
check bits have not been assigned values. We show next that C is uniquely
determined from rule HC.

From rule HC, Ĉ ⊕ D̂ = 0. Therefore, Ĉ = D̂. Since we know D, we can
compute D̂. For the example considered earlier, D̂ = 1101. Therefore, we have
to set the check bits so that Ĉ = 1101. This is done by simply assigning the
bit string Ĉ to the check bits in order from higher to lower positions; for the
example, assign 1 to the check bit at positions 8, 4 and 1, and 0 to the check
bit at position 2. The reason this rule works is that assigning a value v to the
check bit at position 2i, i ≥ 0, in the transmitted string has the effect of setting
the ith bit of Ĉ to v.

How many check bits do we need for transmitting a given number of data
bits? Let d be the number of data bits and c the number of check bits. With
c check bits, we can encode 2c positions, i.e., 0 through 2c − 1. Since we have
decided not to have a position numbered 0 (see the discussion at the end of
the “Receiver” and the beginning of the “Sender” paragraphs), the number of
positions is at most 2c − 1. We have, d + c ≤ 2c − 1. Therefore, the number of



46 CHAPTER 2. ERROR DETECTION AND CORRECTION

data bits is no more than 2c − 1 − c.

2.7.4 Reed-Muller Code

You have probably emailed photographs or sent faxes. Such transmissions are
always digital; text, image, audio, video are all converted first to bit strings and
then transmitted. The receiver converts the received string to its original form.
For text strings, conversion to and from bit strings is straightforward. For a
still image, like a photograph or scanned document, the image is regarded as
a matrix: a photograph, for instance may be broken up into 200 rows, each a
strip, and each row may again be broken up into columns. It is not unusual to
have over a million elements in a matrix for a photograph the size of a page.
Each matrix element is called a pixel (for picture element). Each pixel is then
converted to a bit string and the entire matrix is transmitted in either row-major
or column-major order.

The conversion of a pixel into a bit string is not entirely straightforward;
in fact, that is the subject matter of this section. In the most basic scheme,
each pixel in a black and white photograph is regarded as either all black or all
white, and coded by a single bit. This representation is acceptable if there are a
large number of pixels, i.e., the resolution is fine, so that the eye cannot detect
minute variations in shade within a pixel. If the resolution is low, say, an image
of the size of a page is broken up into a 80 × 110 matrix, each pixel occupies
around .01 square inch; the image will appear grainy after being converted at
the receiver.

The Mariner 4 spacecraft, in 1965, sent 22 photographs of Mars, each one
represented by a 200 × 200 matrix of pixels. Each pixel encoded 64 possible
levels of brightness, and was transmitted as a 6-bit string. A single picture,
consisting of 200 × 200 × 6 bits, was transmitted at the rate of slightly over 8
bits per second, thus requiring around 8 hours for transmission. The subsequent
Mariners, 6, 7 and 9, did a much better job. Each picture was broken down
to 700 × 832 pixels (i.e., 582,400 pixels per picture vs. 40,000 of Mariner 4)
and each pixel of 6 bits was encoded by 32 bits, i.e., 26 redundant bits were
employed for error detection and correction. The transmission rate was 16,200
bits per second. This takes around 18 minutes of transmission time per picture
of much higher quality, compared to the earlier 8 hours.

Our interest in this section is in transmitting a single pixel so that an error in
transmission can be detected and/or corrected. The emphasis is on correction,
because retransmission is not a desirable option in this application. We study
the simple Reed-Muller code employed by the later Mariners.

To motivate the discussion let us consider how to encode a pixel that has
8 possible values. We need only 3 bits, but we will encode using 8 bits, so as
to permit error correction. As pointed out in Section 2.7.2, error correcting
capability depends on the Hamming distance between the codewords. The 8-
bit code we employ has distance 4 between every pair of codewords; so, we
can detect 3 errors and correct 1. Error correction capability is low with 8-
bit codewords. The Mariners employed 32-bit codewords, where the inter-word



2.7. ERROR CORRECTION 47

distance is 16; so, 15 errors could be detected and 7 corrected.
The codewords for the 8-bit Reed-Muller code are shown as rows of the

matrix in Table 2.12. The rest of this section is devoted to the construction of
2n codewords, n ≥ 1, where the Hamming distance between any two codewords
is exactly 2n−1.

Hadamard Matrix

We will define a family of 0, 1 matrices H , where Hn is a 2n×2n matrix, n ≥ 0.
In the Reed-Muller code, we take each row of the matrix to be a codeword.

The family H is defined recursively.

H0 =
[

1
]

Hn+1 =




Hn Hn

Hn Hn




where Hn is the bit-wise complementation of Hn. Matrices H1, H2 , and H3

are shown in Tables 2.10, 2.11, and 2.12.

H1 =

[
1 1
1 0

]

Table 2.10: Hadamard matrix H1

H2 =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1




Table 2.11: Hadamard matrix H2

Hadamard matrices have many pleasing properties. The two that are of
interest to us are: (1) Hn is symmetric for all n, and (2) the Hamming distance
between any two distinct rows of Hn, n ≥ 1, is 2n−1. Since the matrices have
been defined recursively, it is no surprise that the proofs employ induction. I
will leave the proof of (1) to you. Let us prove (2).

We apply matrix algebra to prove this result. To that end, we replace a 0
by −1 and leave a 1 as 1. Dot product of two words x and y is given by

x · y = Σi(xi × yi)

Note that if xi = yi then xi ×yi = 1 and otherwise, xi ×yi = −1. Therefore,
x · y = 0 iff x and y differ at exactly half the positions (see exercise below).



48 CHAPTER 2. ERROR DETECTION AND CORRECTION

H3 =




1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0




Table 2.12: Hadamard matrix H3: 8-bit simple Reed-Muller code

To show that all pairs of distinct rows of Hn differ in exactly half the po-
sitions, we take the matrix product Hn × HT

n and show that the off-diagonal
elements, those corresponding to pairs of distinct rows of Hn, are all zero. That
is, Hn ×HT

n is a diagonal matrix. Since Hn is symmetric, Hn = HT
n . We show:

Theorem: Hn × Hn is a diagonal matrix, for all n, n ≥ 0.

Proof: Proof is by induction on n.

• n = 0 : H0 × H0 =
[

1
]
×

[
1

]
=

[
1

]

• n + 1, where n ≥ 0 :

Hn+1 × Hn+1

= {definition of Hn+1}



Hn Hn

Hn Hn


 ×




Hn Hn

Hn Hn




= {matrix multiplication}



Hn × Hn + Hn × Hn Hn × Hn + Hn × Hn

Hn × Hn + Hn × Hn Hn × Hn + Hn × Hn




= {Hn = −Hn}



2(Hn × Hn) 0

0 2(Hn × Hn)




From induction hypothesis, since Hn × Hn is diagonal, so is 2(Hn × Hn).
Therefore, the matrix above is diagonal.



2.7. ERROR CORRECTION 49

Exercise 20

Compute the Hamming distance of x and y in terms of x · y and the lengths of
the words. ✷

Solution Let

m = the length of x (and also of y)
e = number of positions i where xi = yi

d = number of positions i where xi 6= yi

Thus, the Hamming distance is d. We have

e + d = m, and
e − d = x · y, therefore
e + d − (e − d) = m − x · y, or
d = (m − x · y)/2


